Ad
related to: xlookup formula examples statistics function models
Search results
Results From The WOW.Com Content Network
Functions involving two or more variables require multidimensional array indexing techniques. The latter case may thus employ a two-dimensional array of power[x][y] to replace a function to calculate x y for a limited range of x and y values. Functions that have more than one result may be implemented with lookup tables that are arrays of ...
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process . [ 1 ]
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.
A copula model has been developed in the field of oncology, for example, to jointly model genotypes, phenotypes, and pathways to reconstruct a cellular network to identify interactions between specific phenotype and multiple molecular features (e.g. mutations and gene expression change).
The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...
In frequentist statistics, the likelihood function is itself a statistic that summarizes a single sample from a population, whose calculated value depends on a choice of several parameters θ 1... θ p, where p is the count of parameters in some already-selected statistical model. The value of the likelihood serves as a figure of merit for the ...
The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.