When.com Web Search

  1. Ads

    related to: how to solve a polynomial by factoring examples of equations in real life

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete. In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out.

  3. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms. The integer at the ...

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials.

  5. Factor theorem - Wikipedia

    en.wikipedia.org/wiki/Factor_theorem

    In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).

  6. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    q is an integer factor of the leading coefficient a n. The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n = 1.

  7. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:

  8. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    Single Multiplicity-2 (SM2): when the general quartic equation can be expressed as () () =, where , , and are three different real numbers or is a real number and and are a couple of non-real complex conjugate numbers. This case is divided into two subcases, those that can be reduced to a biquadratic equation and those in which this is impossible.

  9. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding the real roots of a polynomial with real coefficients is a problem that has received much attention since the beginning of 19th century, and is still an active domain of research. Most root-finding algorithms can find some real roots, but cannot certify having found all the roots.