Ads
related to: conductivity in solution formula chemistry example
Search results
Results From The WOW.Com Content Network
Conductivity measurements are used routinely in many industrial and environmental applications as a fast, inexpensive and reliable way of measuring the ionic content in a solution. [1] For example, the measurement of product conductivity is a typical way to monitor and continuously trend the performance of water purification systems.
For weak electrolytes (i.e. incompletely dissociated electrolytes), however, the molar conductivity strongly depends on concentration: The more dilute a solution, the greater its molar conductivity, due to increased ionic dissociation. For example, acetic acid has a higher molar conductivity in dilute aqueous acetic acid than in concentrated ...
The conductivity of a water/aqueous solution is highly dependent on its concentration of dissolved salts, and other chemical species that ionize in the solution. Electrical conductivity of water samples is used as an indicator of how salt-free, ion-free, or impurity-free the sample is; the purer the water, the lower the conductivity (the higher ...
Condosity is a comparative measurement of electrical conductivity of a solution. The condosity of any given solution is defined as the molar concentration of a sodium chloride (NaCl) solution that has the same specific electrical conductance as the solution under test. [1] [2] [3]
In usual analytical chemistry practice, the term conductometry is used as a synonym of conductometric titration while the term conductimetry is used to describe non-titrative applications. [1] Conductometry is often applied to determine the total conductance of a solution or to analyze the end point of titrations that include ions. [2]
An acid-base indicator such as bromophenol blue is added to make visible the boundary between the acidic HCl solution and the near-neutral CdCl 2 solution. [8] The boundary tends to remain sharp since the leading solution HCl has a higher conductivity that the indicator solution CdCl 2 , and therefore a lower electric field to carry the same ...
In 1921, solid silver iodide (AgI) was found to have had extraordinary high ionic conductivity at temperatures above 147 °C, AgI changes into a phase that has an ionic conductivity of ~ 1 –1 cm −1. [clarification needed] This high temperature phase of AgI is an example of a superionic conductor.
For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1] This means that a sodium ion in an electric field of 1 V/m would have an average drift velocity of 5.19 × 10 −8 m/s. Such values can be obtained from measurements of ionic conductivity in solution.
Ad
related to: conductivity in solution formula chemistry example