Search results
Results From The WOW.Com Content Network
The ampere is named for French physicist and mathematician André-Marie Ampère (1775–1836), who studied electromagnetism and laid the foundation of electrodynamics.In recognition of Ampère's contributions to the creation of modern electrical science, an international convention, signed at the 1881 International Exposition of Electricity, established the ampere as a standard unit of ...
"The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge e to be 1.602 176 634 × 10 −19 when expressed in the unit C, which is equal to A s, where the second is defined in terms of ∆ν Cs." [1]
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere
The ampere or amp (symbol A) is the base unit of electric current in the International System of Units. Ampere or Ampère may also refer to: People
The ampere is an SI base unit and electric current is a base ... To provide a definition of current independent ... of perfect conductivity in classical physics.
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
The coulomb was originally defined, using the latter definition of the ampere, as 1 A × 1 s. [4] The 2019 redefinition of the ampere and other SI base units fixed the numerical value of the elementary charge when expressed in coulombs and therefore fixed the value of the coulomb when expressed as a multiple of the fundamental charge.
The force per unit length is: = (,,). The direction of the force is along the y-axis, representing wire 1 getting pulled towards wire 2 if the currents are parallel, as expected. The magnitude of the force per unit length agrees with the expression for F m L {\displaystyle {\frac {F_{m}}{L}}} shown above.