Search results
Results From The WOW.Com Content Network
In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves differ by less than the coherence length. A wave with a longer coherence length is closer to a perfect ...
The superconducting coherence length is a measure of the size of a Cooper pair (distance between the two electrons) and is of the order of cm. The electron near or at the Fermi surface moving through the lattice of a metal produces behind itself an attractive potential of range of the order of 3 × 10 − 6 {\displaystyle 3\times 10^{-6}} cm ...
The coherence length is defined as the distance the wave travels in time . [11]: 560, 571–573 The coherence time is not the time duration of the signal; the coherence length differs from the coherence area (see below).
The coherence time, usually designated τ, is calculated by dividing the coherence length by the phase velocity of light in a medium; approximately given by = where λ is the central wavelength of the source, Δν and Δλ is the spectral width of the source in units of frequency and wavelength respectively, and c is the speed of light in vacuum.
The Fried parameter has units of length and is typically expressed in centimeters. It is defined as the diameter of a circular area over which the rms wavefront aberration due to passage through the atmosphere is equal to 1 radian, and typical values relevant to astronomy are in the tens of centimeters depending on atmospheric conditions.
The coherence length determines the width of the correlogram, which relies on the spectral width of the light source, as well as on structural aspects such as the spatial coherence of the light source and the numerical aperture (NA) of the optical system. The following discussion assumes that the dominant contribution to the coherence length is ...
is the coherence length of the light beam. Similar to the case of Young's double slit experiment, the classical and the quantum description lead to the same result, but that does not mean that two descriptions are equivalent.
The coherence length is the length of the medium in which the phase of pump and the sum of idler and signal frequencies are 180 degrees from each other. At each coherence length the crystal axes are flipped which allows the energy to continue to positively flow from the pump to the signal and idler frequencies.