Search results
Results From The WOW.Com Content Network
Consider two wells, X and Y. Well X has a measured depth of 9,800 ft and a true vertical depth of 9,800 ft while well Y has measured depth of 10,380 ft while its true vertical depth is 9,800 ft. To calculate the hydrostatic pressure of the bottom hole, the true vertical depth is used because gravity acts (pulls) vertically down the hole. [2]
Some sections of stratigraphic layers can be sealed or isolated. These changes create areas where there is not static equilibrium. A location in the layer is said to be in under pressure when the local pressure is less than the hydrostatic pressure, and in overpressure when the local pressure is greater than the hydrostatic pressure. [2]
For example, the absolute pressure compared to vacuum is p = ρ g Δ z + p 0 , {\displaystyle p=\rho g\Delta z+p_{\mathrm {0} },} where Δ z {\displaystyle \Delta z} is the total height of the liquid column above the test area to the surface, and p 0 is the atmospheric pressure , i.e., the pressure calculated from the remaining integral over ...
In continuum mechanics, hydrostatic stress, also known as isotropic stress or volumetric stress, [1] is a component of stress which contains uniaxial stresses, but not shear stresses. [2] A specialized case of hydrostatic stress contains isotropic compressive stress, which changes only in volume, but not in shape. [ 1 ]
In continuum mechanics, stress triaxiality is the relative degree of hydrostatic stress in a given stress state. [1] It is often used as a triaxiality factor, T.F, which is the ratio of the hydrostatic stress, σ m {\displaystyle \sigma _{m}} , to the Von Mises equivalent stress , σ e q {\displaystyle \sigma _{eq}} .
For example, in designing a staircase, a dead load factor may be 1.2 times the weight of the structure, and a live load factor may be 1.6 times the maximum expected live load. These two "factored loads" are combined (added) to determine the "required strength" of the staircase.
A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy (hydrostatic energy i.e. flow, pressure). Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet.
Vertical pressure variation is the variation in pressure as a function of elevation.Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects.