Search results
Results From The WOW.Com Content Network
The slant height of a right circular cone is the distance from any point on the circle of its base to the apex via a line segment along the surface of the cone. It is given by r 2 + h 2 {\displaystyle {\sqrt {r^{2}+h^{2}}}} , where r {\displaystyle r} is the radius of the base and h {\displaystyle h} is the height.
The height of a right square pyramid can be similarly obtained, with a substitution of the slant height formula giving: [6] = =. A polyhedron 's surface area is the sum of the areas of its faces. The surface area A {\displaystyle A} of a right square pyramid can be expressed as A = 4 T + S {\displaystyle A=4T+S} , where T {\displaystyle T} and ...
For a circular bicone with radius R and height center-to-top H, the formula for volume becomes ... is the slant height. Regular right symmetric n-gonal bipyramids:
In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation ... is the slant height of the cone ...
The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.
An example of slant range is the distance to an aircraft flying at high altitude with respect to that of the radar antenna. The slant range (1) is the hypotenuse of the triangle represented by the altitude of the aircraft and the distance between the radar antenna and the aircraft's ground track (point (3) on the earth directly below the aircraft).
The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ): a = R 2 2 ( θ − sin θ ) {\displaystyle a={\tfrac {R^{2}}{2}}\left(\theta -\sin \theta \right)}
Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.