Search results
Results From The WOW.Com Content Network
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and therefore follows any changes in the magnitude of the current.
Note, , the reactance in parallel, has a negative reactance because it is typically a capacitor. This gives the L-network the additional feature of harmonic suppression since it is a low pass filter too. The inverse connection (impedance step-up) is simply the reverse—for example, reactance in series with the source.
An LC circuit, oscillating at its natural resonant frequency, can store electrical energy. See the animation. A capacitor stores energy in the electric field (E) between its plates, depending on the voltage across it, and an inductor stores energy in its magnetic field (B), depending on the current through it.
Mutual inductance occurs when the magnetic field of an inductor induces a magnetic field in an adjacent inductor. Mutual induction is the basis of transformer construction. = where M is the maximum mutual inductance possible between 2 inductors and L 1 and L 2 are the two inductors. In general
Electrical lengthening and electrical shortening means adding reactance (capacitance or inductance) to an antenna or conductor to increase or decrease the electrical length, [1] usually for the purpose of making it resonant at a different resonant frequency.
And for typical transmission lines, that are carefully built from wire with low loss resistance and small insulation leakage conductance ; further, used for high frequencies, the inductive reactance and the capacitive admittance will both be large, so the constant is very close to being a real number: .