When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.

  3. Asymptotically optimal algorithm - Wikipedia

    en.wikipedia.org/wiki/Asymptotically_optimal...

    Formally, suppose that we have a lower-bound theorem showing that a problem requires Ω(f(n)) time to solve for an instance (input) of size n (see Big O notation § Big Omega notation for the definition of Ω). Then, an algorithm which solves the problem in O(f(n)) time is said to be asymptotically optimal.

  4. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    Asymptotic theory does not provide a method of evaluating the finite-sample distributions of sample statistics, however. Non-asymptotic bounds are provided by methods of approximation theory. Examples of applications are the following. In applied mathematics, asymptotic analysis is used to build numerical methods to approximate equation solutions.

  5. Worst-case complexity - Wikipedia

    en.wikipedia.org/wiki/Worst-case_complexity

    In computer science (specifically computational complexity theory), the worst-case complexity measures the resources (e.g. running time, memory) that an algorithm requires given an input of arbitrary size (commonly denoted as n in asymptotic notation). It gives an upper bound on the resources required by the algorithm.

  6. Analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_algorithms

    In theoretical analysis of algorithms it is common to estimate their complexity in the asymptotic sense, i.e., to estimate the complexity function for arbitrarily large input. Big O notation, Big-omega notation and Big-theta notation are used to this end. [2]

  7. Asymptotic computational complexity - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_computational...

    With respect to computational resources, asymptotic time complexity and asymptotic space complexity are commonly estimated. Other asymptotically estimated behavior include circuit complexity and various measures of parallel computation , such as the number of (parallel) processors.

  8. Algorithmic efficiency - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_efficiency

    In the theoretical analysis of algorithms, the normal practice is to estimate their complexity in the asymptotic sense. The most commonly used notation to describe resource consumption or "complexity" is Donald Knuth's Big O notation, representing the complexity of an algorithm as a function of the size of the input .

  9. Space complexity - Wikipedia

    en.wikipedia.org/wiki/Space_complexity

    The space complexity of an algorithm or a data structure is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. [ 1 ]