When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uncorrelatedness (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Uncorrelatedness...

    Further, two jointly normally distributed random variables are independent if they are uncorrelated, [4] although this does not hold for variables whose marginal distributions are normal and uncorrelated but whose joint distribution is not joint normal (see Normally distributed and uncorrelated does not imply independent).

  3. Misconceptions about the normal distribution - Wikipedia

    en.wikipedia.org/wiki/Misconceptions_about_the...

    Students of statistics and probability theory sometimes develop misconceptions about the normal distribution, ideas that may seem plausible but are mathematically untrue. For example, it is sometimes mistakenly thought that two linearly uncorrelated, normally distributed random variables must be statistically independent.

  4. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  5. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Independent: Each outcome will not affect the other outcome (for from 1 to 10), which means the variables , …, are independent of each other. Identically distributed : Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains ...

  6. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Since independent random variables are always uncorrelated (see Covariance § Uncorrelatedness and independence), the equation above holds in particular when the random variables , …, are independent. Thus, independence is sufficient but not necessary for the variance of the sum to equal the sum of the variances.

  7. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector ( X , Y ) with joint cumulative distribution function (CDF) F X , Y ( x , y ) {\displaystyle F_{X,Y}(x,y)} satisfies

  8. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    As it approaches zero there is less of a relationship (closer to uncorrelated). The closer the coefficient is to either −1 or 1, the stronger the correlation between the variables. If the variables are independent, Pearson's correlation coefficient is 0. However, because the correlation coefficient detects only linear dependencies between two ...

  9. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    This example shows that if two random variables are uncorrelated, that does not in general imply that they are independent. However, if two variables are jointly normally distributed (but not if they are merely individually normally distributed), uncorrelatedness does imply independence. [9]