Search results
Results From The WOW.Com Content Network
Further, two jointly normally distributed random variables are independent if they are uncorrelated, [4] although this does not hold for variables whose marginal distributions are normal and uncorrelated but whose joint distribution is not joint normal (see Normally distributed and uncorrelated does not imply independent).
Students of statistics and probability theory sometimes develop misconceptions about the normal distribution, ideas that may seem plausible but are mathematically untrue. For example, it is sometimes mistakenly thought that two linearly uncorrelated, normally distributed random variables must be statistically independent.
However, it is not true that two random variables that are (separately, marginally) normally distributed and uncorrelated are independent. Two random variables that are normally distributed may fail to be jointly normally distributed, i.e., the vector whose components they are may fail to have a multivariate normal distribution.
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.
In general, random variables may be uncorrelated but statistically dependent. But if a random vector has a multivariate normal distribution then any two or more of its components that are uncorrelated are independent. This implies that any two or more of its components that are pairwise independent are independent.
When the errors on x are uncorrelated, the general expression simplifies to =, where = is the variance of k-th element of the x vector. Note that even though the errors on x may be uncorrelated, the errors on f are in general correlated; in other words, even if Σ x {\displaystyle {\boldsymbol {\Sigma }}^{x}} is a diagonal matrix, Σ f ...
As it approaches zero there is less of a relationship (closer to uncorrelated). The closer the coefficient is to either −1 or 1, the stronger the correlation between the variables. If the variables are independent, Pearson's correlation coefficient is 0. However, because the correlation coefficient detects only linear dependencies between two ...
If two random variables are subindependent, and if their covariance exists, then they are uncorrelated. [ 1 ] Subindependence has some peculiar properties: for example, there exist random variables X and Y that are subindependent, but X and αY are not subindependent when α ≠ 1 [ 1 ] and therefore X and Y are not independent.