Search results
Results From The WOW.Com Content Network
The third-order intercept point relates nonlinear products caused by the third-order nonlinear term to the linearly amplified signal, in contrast to the second-order intercept point that uses second-order terms. The intercept point is a purely mathematical concept and does not correspond to a practically occurring physical power level.
By using homogeneous coordinates, the intersection point of two implicitly defined lines can be determined quite easily. In 2D, every point can be defined as a projection of a 3D point, given as the ordered triple (x, y, w). The mapping from 3D to 2D coordinates is (x′, y′) = ( x / w , y / w ).
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...
The Second-order intercept point, also known as the SOI, IP2, or IIP2 (Input intercept point), is a measure of linearity that quantifies the second-order distortion generated by nonlinear systems and devices. Examples of frequently used devices that are concerned with this measure are amplifiers and mixers.
The -intercept of () is indicated by the red dot at (=, =). In analytic geometry , using the common convention that the horizontal axis represents a variable x {\displaystyle x} and the vertical axis represents a variable y {\displaystyle y} , a y {\displaystyle y} -intercept or vertical intercept is a point where the graph of a function or ...
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
The vector equation for a line is = + where is a unit vector in the direction of the line, is a point on the line, and is a scalar in the real number domain. Substituting the equation for the line into the equation for the plane gives
Some of the important data of a line is its slope, x-intercept, known points on the line and y-intercept. The equation of the line passing through two different points (,) and (,) may be written as () = ().