When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    An elliptic Kepler orbit with an eccentricity of 0.7, a parabolic Kepler orbit and a hyperbolic Kepler orbit with an eccentricity of 1.3. The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation ()

  3. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit . There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in ...

  4. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section.

  5. Radial trajectory - Wikipedia

    en.wikipedia.org/wiki/Radial_trajectory

    The problem of finding the separation of two bodies at a given time, given their separation and velocity at another time, is known as the Kepler problem. This section solves the Kepler problem for radial orbits. The first step is to determine the constant . Use the sign of to determine the orbit type.

  6. Eccentricity vector - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_vector

    For Kepler orbits the eccentricity vector is a constant of motion. Its main use is in the analysis of almost circular orbits, as perturbing (non-Keplerian) forces on an actual orbit will cause the osculating eccentricity vector to change continuously as opposed to the eccentricity and argument of periapsis parameters for which eccentricity zero ...

  7. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Kepler's first law states that: The orbit of every planet is an ellipse with the sun at one of the two foci. Kepler's first law placing the Sun at one of the foci of an elliptical orbit Heliocentric coordinate system (r, θ) for ellipse.

  8. Parabolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Parabolic_trajectory

    In astrodynamics or celestial mechanics a parabolic trajectory is a Kepler orbit with the eccentricity equal to 1 and is an unbound orbit that is exactly on the border between elliptical and hyperbolic. When moving away from the source it is called an escape orbit, otherwise a capture orbit.

  9. Osculating orbit - Wikipedia

    en.wikipedia.org/wiki/Osculating_orbit

    Osculating orbit (inner, black) and perturbed orbit (red) In astronomy, and in particular in astrodynamics, the osculating orbit of an object in space at a given moment in time is the gravitational Kepler orbit (i.e. an elliptic or other conic one) that it would have around its central body if perturbations were absent. [1]