Search results
Results From The WOW.Com Content Network
This mechanism can be used to trap light in a waveguide. d. This is the basic principle behind fiber optics in which light is guided along a high index glass core in a lower index glass cladding. The basic principles behind optical waveguides can be described using the concepts of geometrical or ray optics, as illustrated in the diagram.
A waveguide is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include acoustic waveguides which direct sound, optical waveguides which direct light, and radio-frequency waveguides which direct electromagnetic waves other than light like radio waves.
A slot-waveguide is an optical waveguide that guides strongly confined light in a subwavelength-scale low refractive index region by total internal reflection.. A slot-waveguide consists of two strips or slabs of high-refractive-index (n H) materials separated by a subwavelength-scale low-refractive-index (n S) slot region and surrounded by low-refractive-index (n C) cladding materials.
In optics, an ARROW (anti-resonant reflecting optical waveguide) is a type of waveguide that uses the principle of thin-film interference to guide light with low loss. It is formed from an anti-resonant Fabry–Pérot reflector. The optical mode is leaky, but relatively low-loss propagation can be achieved by making the Fabry–Pérot reflector ...
Dispersion occurs when different frequencies of light have different phase velocities, due either to material properties (material dispersion) or to the geometry of an optical waveguide (waveguide dispersion). The most familiar form of dispersion is a decrease in index of refraction with increasing wavelength, which is seen in most transparent ...
The optical waveguide the soliton creates while propagating is not only a mathematical model, but it actually exists and can be used to guide other waves at different frequencies [citation needed]. This way it is possible to let light interact with light at different frequencies (this is impossible in linear media).
The AWGs consist of a number of input (1) and output (5) couplers, a free space propagation region (2) and (4) and the grating waveguides (3). The grating waveguides consists of many waveguides, each having a constant length increment (ΔL). Light is coupled into the device via an optical fiber (1) connected to the input port.
A multi-mode interferometer (MMI), also known as a multimode interference coupler, is a micro-scale structure in which light waves can travel, such that the optical power is split or combined in a predictable way. In an MMI, light is confined and guided, and thus the MMI is essentially a broad optical waveguide.