When.com Web Search

  1. Ad

    related to: microsoft azure machine learning algorithm cheat sheet

Search results

  1. Results From The WOW.Com Content Network
  2. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  3. Feature hashing - Wikipedia

    en.wikipedia.org/wiki/Feature_hashing

    In a typical document classification task, the input to the machine learning algorithm (both during learning and classification) is free text. From this, a bag of words (BOW) representation is constructed: the individual tokens are extracted and counted, and each distinct token in the training set defines a feature (independent variable) of each of the documents in both the training and test sets.

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  5. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  6. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In pattern recognition and machine learning, a feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis. When representing images, the feature values ...

  7. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to produce because of the large amount of time needed to label the data. Although they do not need to be labeled, high-quality datasets for unsupervised learning can also be difficult and costly to produce ...

  8. Microsoft Azure - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Azure

    Microsoft Azure, or just Azure (/ˈæʒər, ˈeɪʒər/ AZH-ər, AY-zhər, UK also /ˈæzjʊər, ˈeɪzjʊər/ AZ-ure, AY-zure), [5] [6] [7] is the cloud computing platform developed by Microsoft. It has management, access and development of applications and services to individuals, companies, and governments through its global infrastructure.

  9. Applications of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Applications_of_artificial...

    Some models built via machine learning algorithms have over 90% accuracy in distinguishing between spam and legitimate emails. [16] These models can be refined using new data and evolving spam tactics. Machine learning also analyzes traits such as sender behavior, email header information, and attachment types, potentially enhancing spam detection.