When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. RSA numbers - Wikipedia

    en.wikipedia.org/wiki/RSA_numbers

    square root: four different dependencies were run in parallel on four 250 MHZ SGI Origin 2000 processors at CWI; three of them found the factors of RSA-140 after 14.2, 19.0 and 19.0 CPU-hours eleven weeks (including four weeks for polynomial selection, one month for sieving, one week for data filtering and matrix construction, five days for the ...

  3. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  4. RSA Factoring Challenge - Wikipedia

    en.wikipedia.org/wiki/RSA_Factoring_Challenge

    RSA Laboratories stated: "Now that the industry has a considerably more advanced understanding of the cryptanalytic strength of common symmetric-key and public-key algorithms, these challenges are no longer active." [6] When the challenge ended in 2007, only RSA-576 and RSA-640 had been factored from the 2001 challenge numbers. [7]

  5. RSA problem - Wikipedia

    en.wikipedia.org/wiki/RSA_problem

    In cryptography, the RSA problem summarizes the task of performing an RSA private-key operation given only the public key. The RSA algorithm raises a message to an exponent, modulo a composite number N whose factors are not known. Thus, the task can be neatly described as finding the e th roots of an arbitrary number

  6. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.

  7. Wiener's attack - Wikipedia

    en.wikipedia.org/wiki/Wiener's_attack

    In the RSA cryptosystem, Bob might tend to use a small value of d, rather than a large random number to improve the RSA decryption performance. However, Wiener's attack shows that choosing a small value for d will result in an insecure system in which an attacker can recover all secret information, i.e., break the RSA system.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Rabin cryptosystem - Wikipedia

    en.wikipedia.org/wiki/Rabin_cryptosystem

    Digitalized Signatures and Public-Key Functions as Intractable as Factorization (in PDF). MIT Laboratory for Computer Science, January 1979. Scott Lindhurst, An analysis of Shank's algorithm for computing square roots in finite fields. in R Gupta and K S Williams, Proc 5th Conf Can Nr Theo Assoc, 1999, vol 19 CRM Proc & Lec Notes, AMS, Aug 1999.