Ads
related to: all possible magic square 3x3 worksheet
Search results
Results From The WOW.Com Content Network
The number zero for n = 6 is an example of a more general phenomenon: associative magic squares do not exist for values of n that are singly even (equal to 2 modulo 4). [3] Every associative magic square of even order forms a singular matrix, but associative magic squares of odd order can be singular or nonsingular. [4]
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
[26] [28] If all the numbers are used and no one gets three numbers that add up to 15 then the game is a draw. [26] Plotting these numbers on a 3×3 magic square shows that the game exactly corresponds with tic-tac-toe, since three numbers will be arranged in a straight line if and only if they total 15. [29]
Consequently, all 4 × 4 pandiagonal magic squares that are associative must have duplicate cells. All 4 × 4 pandiagonal magic squares using numbers 1-16 without duplicates are obtained by letting a equal 1; letting b, c, d, and e equal 1, 2, 4, and 8 in some order; and applying some translation.
One version of the traditional Chinese representation of the 3x3 "Lo Shu" magic square (see MagicSquare-LoShu.png). Date: 4 January 2010: Source: Own work - Made by self from scratch, following layout of PD image Luo4shu1.jpg. Author: AnonMoos: Other versions: See also Magic square Lo Shu.png: SVG development
For example the following sequence can be used to form an order 3 magic square according to the Siamese method (9 boxes): 5, 10, 15, 20, 25, 30, 35, 40, 45 (the magic sum gives 75, for all rows, columns and diagonals). The magic sum in these cases will be the sum of the arithmetic progression used divided by the order of the magic square.
As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.
The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. For a normal magic square of order n – that is, a magic square which contains the numbers 1, 2, ..., n 2 – the magic constant is = +.