When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The difference of two squares can also be used as an arithmetical short cut. If two numbers (whose average is a number which is easily squared) are multiplied, the difference of two squares can be used to give you the product of the original two numbers. For example: = (+)

  3. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  4. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.

  5. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    In other words, the square of a number is the square of its difference from 100 added to the product of one hundred and the difference of one hundred and the product of two and the difference of one hundred and the number. For example, to square 93: 100(100 − 2(7)) + 7 2 = 100 × 86 + 49 = 8,600 + 49 = 8,649

  6. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Factorizations of sums of two squares can be obtained using the sum of two squares theorem. Any other integer Apollonian gasket can be formed by multiplying a primitive root quadruple by an arbitrary integer, and any quadruple in one of these gaskets (that is, any integer solution to the Descartes equation) can be formed by reversing the ...

  7. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    5⋅5, or 5 2 (5 squared), can be shown graphically using a square. Each block represents one unit, 1⋅1, and the entire square represents 5⋅5, or the area of the square. In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation.

  8. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    Congruences of squares are extremely useful in integer factorization algorithms. Conversely, because finding square roots modulo a composite number turns out to be probabilistic polynomial-time equivalent to factoring that number, any integer factorization algorithm can be used efficiently to identify a congruence of squares.

  9. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.