Ads
related to: machine learning algorithms and techniques pdf
Search results
Results From The WOW.Com Content Network
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
Pioneering machine learning research is conducted using simple algorithms. 1960s: Bayesian methods are introduced for probabilistic inference in machine learning. [1] 1970s 'AI winter' caused by pessimism about machine learning effectiveness. 1980s: Rediscovery of backpropagation causes a resurgence in machine learning research. 1990s
Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. It is the combination of automation and ML. [1] AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment.
Landmark learning is a meta-learning approach that seeks to solve this problem. It involves training only the fast (but imprecise) algorithms in the bucket, and then using the performance of these algorithms to help determine which slow (but accurate) algorithm is most likely to do best. [33]
Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.