When.com Web Search

  1. Ads

    related to: discrete mathematics johnsonbaugh pdf answers page 5

Search results

  1. Results From The WOW.Com Content Network
  2. Richard Johnsonbaugh - Wikipedia

    en.wikipedia.org/wiki/Richard_Johnsonbaugh

    Richard F. Johnsonbaugh (born 1941) [1] is an American mathematician and computer scientist. His interests include discrete mathematics and the history of mathematics. He is the author of several textbooks. Johnsonbaugh earned a bachelor's degree in mathematics from Yale University, and then moved to the University of Oregon for graduate study. [2]

  3. Discrete mathematics - Wikipedia

    en.wikipedia.org/wiki/Discrete_mathematics

    Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).

  4. Outline of discrete mathematics - Wikipedia

    en.wikipedia.org/.../Outline_of_discrete_mathematics

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]

  5. Category:Discrete mathematics - Wikipedia

    en.wikipedia.org/wiki/Category:Discrete_mathematics

    Discrete mathematics, also called finite mathematics, is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the notion of continuity. Most, if not all, of the objects studied in finite mathematics are countable sets , such as integers , finite graphs , and formal languages .

  6. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). [25] Modern numerical analysis does not seek exact answers, because exact answers are often impossible to obtain in practice.

  7. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Alexandrov's uniqueness theorem (discrete geometry) Alperin–Brauer–Gorenstein theorem (finite groups) Alspach's theorem (graph theory) Amitsur–Levitzki theorem (linear algebra) Analyst's traveling salesman theorem (discrete mathematics) Analytic Fredholm theorem (functional analysis) Anderson's theorem (real analysis)

  1. Ad

    related to: discrete mathematics johnsonbaugh pdf answers page 5