Search results
Results From The WOW.Com Content Network
In the liver, ethanol is converted into acetyl CoA by a two step process. In the first step, ethanol is converted to acetaldehyde by alcohol dehydrogenase. In the second step, the acetaldehyde is converted to acetyl CoA by acetaldehyde dehydrogenase. Acetaldehyde is more toxic than alcohol and is responsible for many hangover symptoms. [5]
In addition, acetyl-CoA is a precursor for the biosynthesis of various acetyl-chemicals, acting as an intermediate to transfer an acetyl group during the biosynthesis of those acetyl-chemicals. Acetyl-CoA is also involved in the regulation of various cellular mechanisms by providing acetyl groups to target amino acid residues for post ...
ADH2 is used by the yeast to convert ethanol back into acetaldehyde, and it is expressed only when sugar concentration is low. Having these two enzymes allows yeast to produce alcohol when sugar is plentiful (and this alcohol then kills off competing microbes), and then continue with the oxidation of the alcohol once the sugar, and competition ...
C 2 H 6 O (ethanol) is converted to C 2 H 4 O (acetaldehyde), then to C 2 H 4 O 2 (acetic acid), then to acetyl-CoA. Once acetyl-CoA is formed, it is free to enter directly into the citric acid cycle (TCA) and is converted to 2 CO 2 molecules in 8 reactions. The equations: C 2 H 6 O(ethanol) + NAD + → C 2 H 4 O(acetaldehyde) + NADH + H +
The acyl-CoA breaks at the thioester bond, forming a CoA and carboxylic acid. The carboxylic acid remains bound to the enzyme, but it is soon displaced by CoA and leaves. A new carboxylic acid (the CoA acceptor) enters and forms a new acyl-CoA. The new acyl-CoA is released, completing the transfer of CoA from one molecule to another.
General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain. Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this ...
The systematic name of this enzyme class is acetyl-CoA:[acyl-carrier-protein] S-acetyltransferase. Other names in common use include acetyl coenzyme A-acyl-carrier-protein transacylase, acetyl-CoA:ACP transacylase, [acyl-carrier-protein]acetyltransferase, [ACP]acetyltransferase, and ACAT. This enzyme participates in fatty acid biosynthesis.
It begins with acetyl-CoA and involves the stepwise condensation of two-carbon units, typically derived from malonyl-CoA, to form increasingly longer carbon chains. In fatty acid synthesis, these chains are fully reduced after each elongation step, while in polyketide synthesis, the reduction steps may be partially or completely omitted ...