Search results
Results From The WOW.Com Content Network
What follows is a description of the standard or Tarskian semantics for first-order logic. (It is also possible to define game semantics for first-order logic, but aside from requiring the axiom of choice, game semantics agree with Tarskian semantics for first-order logic, so game semantics will not be elaborated herein.)
Prolog is a logic programming language that has its origins in artificial intelligence, automated theorem proving and computational linguistics. [1] [2] [3]Prolog has its roots in first-order logic, a formal logic, and unlike many other programming languages, Prolog is intended primarily as a declarative programming language: the program is a set of facts and rules, which define relations.
This article describes the syntax and semantics of the purely declarative subset of these languages. Confusingly, the name "logic programming" also refers to a specific programming language that roughly corresponds to the declarative subset of Prolog. Unfortunately, the term must be used in both senses in this article.
Metalanguages based on first-order logic, which can analyze the speech of humans. [1]: 93- Understanding the semantics of a text is symbol grounding: if language is grounded, it is equal to recognizing a machine-readable meaning. For the restricted domain of spatial analysis, a computer-based language understanding system was demonstrated.
The earliest form of logic programming was based on the Horn clause subset of FOL. But later extensions of LP included the negation as failure inference rule, which turns LP into a non-monotonic logic for default reasoning. The resulting extended semantics of LP is a variation of the standard semantics of Horn clauses and FOL, and is a form of ...
There are three common ways of handling this in first-order logic: Use first-order logic with two types. Use ordinary first-order logic, but add a new unary predicate "Set", where "Set(t)" means informally "t is a set". Use ordinary first-order logic, and instead of adding a new predicate to the language, treat "Set(t)" as an abbreviation for ...
The semantics of logic refers to the approaches that logicians have introduced to understand and determine that part of meaning in which they are interested; the logician traditionally is not interested in the sentence as uttered but in the proposition, an idealised sentence suitable for logical manipulation.
Like first-order logic (FOL), a syntax defines which collections of symbols are legal expressions in a description logic, and semantics determine meaning. Unlike FOL, a DL may have several well known syntactic variants.