Search results
Results From The WOW.Com Content Network
Rayleigh scattering of that light off oxygen and nitrogen molecules, and; the response of the human visual system. The strong wavelength dependence of the Rayleigh scattering (~λ −4) means that shorter wavelengths are scattered more strongly than longer wavelengths. This results in the indirect blue and violet light coming from all regions ...
The Rayleigh sky model describes the observed polarization pattern of the daytime sky. Within the atmosphere, Rayleigh scattering of light by air molecules, water, dust, and aerosols causes the sky's light to have a defined polarization pattern. The same elastic scattering processes cause the sky to be blue.
In real life terms what this means is that light is reflected off non-shiny surfaces such as the ground, walls, or fabric, to reach areas not directly in view of a light source. If the diffuse surface is colored , the reflected light is also colored, resulting in similar coloration of surrounding objects.
Mie scattering (Why clouds are white) Metamerism as of alexandrite; Moiré pattern; Newton's rings; Phosphorescence; Pleochroism gems or crystals, which seem "many-colored" Rayleigh scattering (Why the sky is blue, sunsets are red, and associated phenomena) Reflection; Refraction; Sonoluminescence. Shrimpoluminescence; Synchrotron radiation
The dominant radiative scattering processes in the atmosphere are Rayleigh scattering and Mie scattering; they are elastic, meaning that a photon of light can be deviated from its path without being absorbed and without changing wavelength. Under an overcast sky, there is no direct sunlight, and all light results from diffused skylight radiation.
On a sunny day, Rayleigh scattering gives the sky a blue gradient, darkest around the zenith and brightest near the horizon. Light rays coming from the zenith take the shortest-possible path (1 ⁄ 38) through the air mass, yielding less scattering. Light rays coming from the horizon take the longest-possible path through the air, yielding more ...
Rayleigh scattering regime is the scattering of light, or other electromagnetic radiation, by particles much smaller than the wavelength of the light. Rayleigh scattering can be defined as scattering in small size parameter regime x ≪ 1 {\displaystyle x\ll 1} .
Particles in the air scatter short-wavelength light (blue and green) through Rayleigh scattering much more strongly than longer-wavelength yellow and red light. Loosely, the term crepuscular rays is sometimes extended to the general phenomenon of rays of sunlight that appear to converge at a point in the sky, irrespective of time of day. [3] [4]