Search results
Results From The WOW.Com Content Network
In its native range, a species has co-evolved with pathogens, parasites and predators that limit its population. When it arrives in a new territory, it leaves these old enemies behind, while those in its introduced range are less effective at constraining the introduced species' population.
For example, exploitative interactions between a predator and prey can result in the extinction of the victim (the prey, in this case), as the predator, by definition, kills the prey, and thus reduces its population. [2] Another effect of these interactions is in the coevolutionary "hot" and "cold spots" put forth by geographic mosaic theory ...
The Red Queen hypothesis has been invoked by some authors to explain evolution of aging. [30] [31] The main idea is that aging is favored by natural selection since it allows faster adaptation to changing conditions, especially in order to keep pace with the evolution of pathogens, predators and prey. [31]
Hosts and parasites exert reciprocal selective pressures on each other, which may lead to rapid reciprocal adaptation.For organisms with short generation times, host–parasite coevolution can be observed in comparatively small time periods, making it possible to study evolutionary change in real-time under both field and laboratory conditions.
Because parasites interact with other species, they can readily act as vectors of pathogens, causing disease. [9] [10] [11] Predation is by definition not a symbiosis, as the interaction is brief, but the entomologist E. O. Wilson has characterised parasites as "predators that eat prey in units of less than one". [2]
The second experiment focused more on zoonotic pathogens being correlated with emerging infectious diseases in humans. The researchers comprised a database with separate infectious species, infectious pathogens that cause disease in patients with abnormal immune systems, and pathogens that have only been found in one case of human disease. [10]
Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment. [15] It is the study of how the population sizes of species living together in groups change over time and space, and was one of the first aspects of ecology to be studied and modelled mathematically.
Joseph Connell published his hypothesis in 1970 in Dynamics of Populations. [2] Unlike Janzen, Connell proposed experiments that focused on the key prediction that exclusion of host-specific predators would cause a decrease in diversity as tree species with greater establishment or competitive ability formed low-diversity seedling and sapling communities where dominance was concentrated in a ...