Search results
Results From The WOW.Com Content Network
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow, an English mathematician. [3] = Cylinder, where
Specified Minimum Yield Strength (SMYS) means the specified minimum yield strength for steel pipe manufactured in accordance with a listed specification 1. This is a common term used in the oil and gas industry for steel pipe used under the jurisdiction of the United States Department of Transportation .
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
For a tube of silicone rubber [2] with a tensile strength of 10 MPa and an 8 mm outside diameter and 2 mm thick walls. The maximum pressure may be calculated as follows: Outside diameter = 8 millimeters (0.3150 in) Wall thickness = 2 millimeters (0.07874 in) Tensile strength = 10 * 1000000
In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per ...
Stress is the ratio of force over area (S = R/A, where S is the stress, R is the internal resisting force and A is the cross-sectional area). Strain is the ratio of change in length to the original length, when a given body is subjected to some external force (Strain= change in length÷the original length).