Search results
Results From The WOW.Com Content Network
In mathematics, like terms are summands in a sum that differ only by a numerical factor. [1] Like terms can be regrouped by adding their coefficients. Typically, in a polynomial expression, like terms are those that contain the same variables to the same powers, possibly with different coefficients.
A synonym for a function between sets or a morphism in a category. Depending on authors, the term "maps" or the term "functions" may be reserved for specific kinds of functions or morphisms (e.g., function as an analytic term and map as a general term). mathematics See mathematics. multivalued
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
Prime-counting function: Number of primes less than or equal to a given number. Partition function: Order-independent count of ways to write a given positive integer as a sum of positive integers. Möbius μ function: Sum of the nth primitive roots of unity, it depends on the prime factorization of n. Prime omega functions; Chebyshev functions
If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of k disjoint sets (where k is a finite number) equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function (the terms
A – adele ring or algebraic numbers. a.a.s. – asymptotically almost surely. AC – Axiom of Choice, [1] or set of absolutely continuous functions. a.c. – absolutely continuous.
This is a special case of subadditive function, if a sequence is interpreted as a function on the set of natural numbers. Note that while a concave sequence is subadditive, the converse is false. For example, randomly assign a 1 , a 2 , . . . {\displaystyle a_{1},a_{2},...} with values in [ 0.5 , 1 ] {\displaystyle [0.5,1]} ; then the sequence ...