When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    This has the advantage that kinetic momentum can be measured experimentally whereas canonical momentum cannot. Notice that the Hamiltonian ( total energy ) can be viewed as the sum of the relativistic energy (kinetic+rest) , ⁠ E = γ m c 2 {\displaystyle E=\gamma mc^{2}} ⁠ , plus the potential energy , ⁠ V = q φ {\displaystyle V=q\varphi

  3. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.

  4. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    where τ zx is the flux of x-directed momentum in the z-direction, ν is μ/ρ, the momentum diffusivity, z is the distance of transport or diffusion, ρ is the density, and μ is the dynamic viscosity. Newton's law of viscosity is the simplest relationship between the flux of momentum and the velocity gradient.

  5. Crystal momentum - Wikipedia

    en.wikipedia.org/wiki/Crystal_momentum

    This is a relation of inter-oscillator distances to the spatial Nyquist frequency of waves in the lattice. [1] See also Aliasing § Sampling sinusoidal functions for more on the equivalence of k-vectors. In solid-state physics, crystal momentum or quasimomentum is a momentum-like vector associated with electrons in a crystal lattice. [2]

  6. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The relationship between frequency (proportional to energy) and wavenumber or velocity (proportional to momentum) is called a dispersion relation. Light waves in a vacuum have linear dispersion relation between frequency: ω = c k {\displaystyle \omega =ck} .

  7. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Mathematically, the duality between position and momentum is an example of Pontryagin duality. In particular, if a function is given in position space, f(r), then its Fourier transform obtains the function in momentum space, φ(p). Conversely, the inverse Fourier transform of a momentum space function is a position space function.

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The concepts invoked in Newton's laws of motion — mass, velocity, momentum, force — have predecessors in earlier work, and the content of Newtonian physics was further developed after Newton's time. Newton combined knowledge of celestial motions with the study of events on Earth and showed that one theory of mechanics could encompass both.

  9. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    In practice, the relationship between power and torque can be observed in bicycles: Bicycles are typically composed of two road wheels, front and rear gears (referred to as sprockets) meshing with a chain, and a derailleur mechanism if the bicycle's transmission system allows multiple gear ratios to be used (i.e. multi-speed bicycle), all of ...