When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Natural frequency - Wikipedia

    en.wikipedia.org/wiki/Natural_frequency

    Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.

  3. Standing wave - Wikipedia

    en.wikipedia.org/wiki/Standing_wave

    Such a standing wave may be formed when a wave is transmitted into one end of a transmission line and is reflected from the other end by an impedance mismatch, i.e., discontinuity, such as an open circuit or a short. [8] The failure of the line to transfer power at the standing wave frequency will usually result in attenuation distortion.

  4. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    The shape of a standing wave in a string fixed at its boundaries is an example of an eigenfunction of a differential operator. The admissible eigenvalues are governed by the length of the string and determine the frequency of oscillation.

  5. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    The oscillation frequency of the standing wave, multiplied by the Planck constant, is the energy of the state according to the Planck–Einstein relation. Stationary states are quantum states that are solutions to the time-independent Schrödinger equation : H ^ | Ψ = E Ψ | Ψ , {\displaystyle {\hat {H}}|\Psi \rangle =E_{\Psi }|\Psi \rangle ...

  6. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    When the equation is applied to waves, k is known as the wave number. The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The ...

  7. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    Panels (E–F) show two different wave functions that are solutions of the Schrödinger equation but not standing waves. The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system.

  8. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  9. Variational method (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Variational_method...

    = if and only if is exactly equal to the wave function of the ground state of the studied system. The variational principle formulated above is the basis of the variational method used in quantum mechanics and quantum chemistry to find approximations to the ground state.