Search results
Results From The WOW.Com Content Network
Lanthanide metals react exothermically with hydrogen to form LnH 2, dihydrides. [1] With the exception of Eu and Yb, which resemble the Ba and Ca hydrides (non-conducting, transparent salt-like compounds),they form black pyrophoric, conducting compounds [6] where the metal sub-lattice is face centred cubic and the H atoms occupy tetrahedral sites. [1]
All lanthanide elements form trivalent cations, Ln 3+, whose chemistry is largely determined by the ionic radius, which decreases steadily from lanthanum (La) to lutetium (Lu). These elements are called lanthanides because the elements in the series are chemically similar to lanthanum.
Then, by considering the data for different anions with the same cation and different cations with the same anion, single ion values relative to an arbitrary zero, are derived. Minus hydration enthalpy for (octahedral) divalent transition metal M 2+ ions [64] Hydration enthalpies of trivalent lanthanide Ln 3+ ions [64]
The lanthanides become harder as the series is traversed: as expected, lanthanum is a soft metal. Lanthanum has a relatively high resistivity of 615 nΩm at room temperature; in comparison, the value for the good conductor aluminium is only 26.50 nΩm. [28] [29] Lanthanum is the least volatile of the lanthanides. [30]
Lanthanide chlorides are a group of chemical compounds that can form between a lanthanide element (from lanthanum to lutetium) and chlorine. The lanthanides in these compounds are usually in the +2 and +3 oxidation states , although compounds with lanthanides in lower oxidation states exist.
The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.
The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), [1] are a set of 17 nearly indistinguishable lustrous silvery-white soft heavy metals.
The lanthanides are the 15 rare-earth chemical elements which lie between lanthanum and lutetium on the periodic table. The lanthanides are trivalent metals.