Search results
Results From The WOW.Com Content Network
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Lawrence Stamper Darken has shown that the Gibbs–Duhem equation can be applied to the determination of chemical potentials of components from a multicomponent system from experimental data regarding the chemical potential ¯ of only one component (here component 2) at all compositions.
A physical situation where the chemical potential for photons can differ from zero are material-filled optical microcavities, with spacings between cavity mirrors in the wavelength regime. In such two-dimensional cases, photon gases with tuneable chemical potential, much reminiscent to gases of material particles, can be observed. [22]
In the infinitesimal expression, the term involving the chemical potential accounts for changes in Gibbs free energy resulting from an influx or outflux of particles. In other words, it holds for an open system or for a closed, chemically reacting system where the N i are changing. For a closed, non-reacting system, this term may be dropped.
The number of particles is, like volume and entropy, the displacement variable in a conjugate pair. The generalized force component of this pair is the chemical potential. The chemical potential may be thought of as a force which, when imbalanced, pushes an exchange of particles, either with the surroundings, or between phases inside the system.
Molar Gibbs free energy is commonly referred to as chemical potential, symbolized by , particularly when discussing a partial molar Gibbs free energy for a component in a mixture. For the characterization of substances or reactions, tables usually report the molar properties referred to a standard state .
For an ideal gas the equation of state can be written as =, where R is the ideal gas constant.The differential change of the chemical potential between two states of slightly different pressures but equal temperature (i.e., dT = 0) is given by = = = , where ln p is the natural logarithm of p.
The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.