Search results
Results From The WOW.Com Content Network
Weinberg angle θ W, and relation between couplings g, g ′, and e = g sin θ W. Adapted from Lee (1981). [1] The pattern of weak isospin, T 3, and weak hypercharge, Y W, of the known elementary particles, showing electric charge, Q, [a] along the Weinberg angle. The neutral Higgs field (upper left, circled) breaks the electroweak symmetry and ...
The strong interaction, or strong nuclear force, is the most complicated interaction, mainly because of the way it varies with distance. The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10 −15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At ...
These fields are the weak isospin fields W 1, W 2, and W 3, and the weak hypercharge field B. This invariance is known as electroweak symmetry . The generators of SU(2) and U(1) are given the name weak isospin (labeled T ) and weak hypercharge (labeled Y ) respectively.
The strong force overpowers the electrostatic repulsion of protons and quarks in nuclei and hadrons respectively, at their respective scales. While quarks are bound in hadrons by the fundamental strong interaction, which is mediated by gluons, nucleons are bound by an emergent phenomenon termed the residual strong force or nuclear force.
The study of the motion of air, particularly its interaction with a solid object, such as an airplane wing. It is a sub-field of fluid dynamics and gas dynamics, and many aspects of aerodynamics theory are common to these fields. Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft ...
If a strong-enough external magnetic field is applied to the material, the domain walls will move via a process in which the spins of the electrons in atoms near the wall in one domain turn under the influence of the external field to face in the same direction as the electrons in the other domain, thus reorienting the domains so more of the ...
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
The energy difference between these 2 sets of d-orbitals is called the splitting parameter, Δ o. The magnitude of Δ o is determined by the field-strength of the ligand: strong field ligands, by definition, increase Δ o more than weak field ligands.