Search results
Results From The WOW.Com Content Network
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
Lewis structure of a water molecule. Lewis structures – also called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs) – are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule.
The simple MO diagram of H 2 O is shown on the right. [2] [3] Following simple symmetry treatments, the 1s orbitals of hydrogen atom are premixed as a 1 and b 1. Orbitals of same symmetry and similar energy levels can then be mixed to form a new set of molecular orbitals with bonding, nonbonding, and antibonding characteristics. In the simple ...
Catalase, which is concentrated in peroxisomes located next to mitochondria, reacts with the hydrogen peroxide to catalyze the formation of water and oxygen. Glutathione peroxidase reduces hydrogen peroxide by transferring the energy of the reactive peroxides to a sulfur-containing tripeptide called glutathione. The sulfur contained in these ...
The characteristic structure of any regular peroxide is the oxygen-oxygen covalent single bond, which connects the two main atoms together. In the event that the molecule has no chemical substituents, the peroxide group will have a [-2] net charge.
The molecule has a bent structure. [3] The superoxide anion, • O − 2, and the hydroperoxyl radical exist in equilibrium in aqueous solution: • O − 2 + H 2 O ⇌ HO • 2 + HO −. The pK a of HO 2 is 4.88. Therefore, about 0.3% of any superoxide present in the cytosol of a typical cell is in the protonated form. [4] It oxidizes nitric ...
Carbon monoxide exemplifies a Lewis structure with formal charges: To obtain the oxidation states, the formal charges are summed with the bond-order value taken positively at the carbon and negatively at the oxygen. Applied to molecular ions, this algorithm considers the actual location of the formal (ionic) charge, as drawn in the Lewis structure.
Few reactions are generally formulated for peroxide salt. In excess of dilute acids or water, they release hydrogen peroxide. [1] Na 2 O 2 + 2 HCl → 2 NaCl + H 2 O 2. Upon heating, the reaction with water leads to the release of oxygen. [1] Upon exposure to air, alkali metal peroxides absorb CO 2 to give peroxycarbonates.