Search results
Results From The WOW.Com Content Network
Some SI units of volume to scale and approximate corresponding mass of water. A cubic centimetre (or cubic centimeter in US English) (SI unit symbol: cm 3; non-SI abbreviations: cc and ccm) is a commonly used unit of volume that corresponds to the volume of a cube that measures 1 cm × 1 cm × 1 cm.
Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³ STP /min. Another expression of it would be Nml/min. Another expression of it would be Nml/min.
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...
The Baumé scale is a pair of hydrometer scales developed by French pharmacist Antoine Baumé in 1768 to measure density of various liquids. The unit of the Baumé scale has been notated variously as degrees Baumé, B°, Bé° and simply Baumé (the accent is not always present).
The Twaddell scale is a hydrometer scale used for measuring the specific gravity of liquids relative to water. On this scale, a specific gravity of 1.000 is reported as 0, and a specific gravity of 2.000 is reported as 200. [ 1 ]
A water level device showing both ends at the same height. A water level (Greek: Aλφαδολάστιχο or (υδροστάθμη) [Alfadolasticho]) is a siphon utilizing two or more parts of the liquid water surface to establish a local horizontal line or plane of reference.
The reference water levels are used on inland waterways to define a range of water levels allowing the full use of the waterway for navigation. [1] Ship passage can be limited by the water levels that are too low, when the fairway might become too shallow for large ("target", "design") ships, or too high, when it might become impossible for the target ships to pass under the bridges. [1]
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.