Search results
Results From The WOW.Com Content Network
The enzyme tyrosine phenol-lyase (EC 4.1.99.2) catalyzes the chemical reaction L -tyrosine + H 2 O ⇌ {\displaystyle \rightleftharpoons } phenol + pyruvate + NH 3 This enzyme belongs to the family of lyases , specifically in the "catch-all" class of carbon-carbon lyases.
Tyrosine ammonia lyase (TAL) is an enzyme in the natural phenols biosynthesis pathway. It transforms L-tyrosine into p-coumaric acid. Tyrosine is also the precursor to the pigment melanin. Tyrosine (or its precursor phenylalanine) is needed to synthesize the benzoquinone structure which forms part of coenzyme Q10. [23] [24]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Phenylalanine ball and stick model spinning. Phenylalanine (symbol Phe or F) [3] is an essential α-amino acid with the formula C 9 H 11 NO 2.It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine.
4-Hydroxyphenylpyruvate dioxygenase (HPPD), also known as α-ketoisocaproate dioxygenase (KIC dioxygenase), is an Fe(II)-containing non-heme oxygenase that catalyzes the second reaction in the catabolism of tyrosine - the conversion of 4-hydroxyphenylpyruvate into homogentisate.
Crystallographic structure of a Streptomyces-derived tyrosinase in complex with a so-called "caddie protein". [8] In all models, only the tyrosinase molecule is shown, copper atoms are shown in green and the molecular surface is shown in red. In models D and E, histidine amino acids are shown as a blue line representation.
This can be done in terms of the chemical elements present, or by molecular structure e.g., water, protein, fats (or lipids), hydroxyapatite (in bones), carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, connective tissue, muscle, bone, etc.
In humans, the tyrosine aminotransferase protein is encoded by the TAT gene. [7] A deficiency of the enzyme in humans can result in what is known as type II tyrosinemia, wherein there is an abundance of tyrosine as a result of tyrosine failing to undergo an aminotransferase reaction to form 4-hydroxyphenylpyruvate. [8]