When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Turing machine - Wikipedia

    en.wikipedia.org/wiki/Turing_machine

    An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an entity unspecified by Turing "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).

  3. Turing machine equivalents - Wikipedia

    en.wikipedia.org/wiki/Turing_machine_equivalents

    Turing's a-machine model. Turing's a-machine (as he called it) was left-ended, right-end-infinite. He provided symbols əə to mark the left end. A finite number of tape symbols were permitted. The instructions (if a universal machine), and the "input" and "out" were written only on "F-squares", and markers were to appear on "E-squares".

  4. Universal Turing machine - Wikipedia

    en.wikipedia.org/wiki/Universal_Turing_machine

    In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, [1] as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible.

  5. Turing machine examples - Wikipedia

    en.wikipedia.org/wiki/Turing_machine_examples

    With regard to what actions the machine actually does, Turing (1936) [2] states the following: "This [example] table (and all succeeding tables of the same kind) is to be understood to mean that for a configuration described in the first two columns the operations in the third column are carried out successively, and the machine then goes over into the m-configuration in the final column."

  6. Nondeterministic Turing machine - Wikipedia

    en.wikipedia.org/.../Nondeterministic_Turing_machine

    In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is not completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine.

  7. Langton's ant - Wikipedia

    en.wikipedia.org/wiki/Langton's_ant

    Langton's ant is a two-dimensional Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. [1] The idea has been generalized in several different ways, such as turmites which add more colors and more states.

  8. Read-only Turing machine - Wikipedia

    en.wikipedia.org/wiki/Read-only_Turing_machine

    With a single infinite stack the model can parse (at least) any language that is computable by a Turing machine in linear time. [2] In particular, the language {a n b n c n } can be parsed by an algorithm which verifies first that there are the same number of a's and b's, then rewinds and verifies that there are the same number of b's and c's.

  9. Configuration graph - Wikipedia

    en.wikipedia.org/wiki/Configuration_graph

    A configuration, also called an instantaneous description (ID), is a finite representation of the machine at a given time. For example, for a finite automata and a given input, the configuration will be the current state and the number of read letters, for a Turing machine it will be the state, the content of the tape and the position of the head.