Search results
Results From The WOW.Com Content Network
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the statistical limits to possible data compression for data whose source is an independent identically-distributed random variable, and the operational meaning of the Shannon entropy. Named after Claude Shannon, the source coding theorem shows that ...
An information diagram is a type of Venn diagram used in information theory to illustrate relationships among Shannon's basic measures of information: entropy, joint entropy, conditional entropy and mutual information. [1] [2] Information
In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source. [1]
Other information-theoretic measures such as conditional information, mutual information, or total correlation can be expressed in terms of joint entropy and are thus related by the corresponding inequalities. Many inequalities satisfied by entropic vectors can be derived as linear combinations of a few basic ones, called Shannon-type inequalities.
The Shannon information is closely related to entropy, which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when measuring it.
Entropy of a Bernoulli trial (in shannons) as a function of binary outcome probability, called the binary entropy function.. In information theory, the binary entropy function, denoted or (), is defined as the entropy of a Bernoulli process (i.i.d. binary variable) with probability of one of two values, and is given by the formula:
A misleading [1] information diagram showing additive and subtractive relationships among Shannon's basic quantities of information for correlated variables and . The area contained by both circles is the joint entropy H ( X , Y ) {\displaystyle \mathrm {H} (X,Y)} .