When.com Web Search

  1. Ad

    related to: lambda calculus reduction practice worksheet printable form

Search results

  1. Results From The WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus consists of constructing lambda terms and performing reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: [a]: A variable is a character or string representing a parameter. (.

  3. Church–Rosser theorem - Wikipedia

    en.wikipedia.org/wiki/Church–Rosser_theorem

    Viewing the lambda calculus as an abstract rewriting system, the Church–Rosser theorem states that the reduction rules of the lambda calculus are confluent. As a consequence of the theorem, a term in the lambda calculus has at most one normal form, justifying reference to "the normal form" of a given normalizable term.

  4. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.

  5. Beta normal form - Wikipedia

    en.wikipedia.org/wiki/Beta_normal_form

    A head normal form is a term that does not contain a beta redex in head position, i.e. that cannot be further reduced by a head reduction. When considering the simple lambda calculus (viz. without the addition of constant or function symbols, meant to be reduced by additional delta rule), head normal forms are the terms of the following shape:

  6. Normalisation by evaluation - Wikipedia

    en.wikipedia.org/wiki/Normalisation_by_evaluation

    Such an essentially semantic, reduction-free, approach differs from the more traditional syntactic, reduction-based, description of normalisation as reductions in a term rewrite system where β-reductions are allowed deep inside λ-terms. NBE was first described for the simply typed lambda calculus. [1]

  7. Normal form (abstract rewriting) - Wikipedia

    en.wikipedia.org/wiki/Normal_form_(abstract...

    A rewriting system has the unique normal form property (UN) if for all normal forms a, b ∈ S, a can be reached from b by a series of rewrites and inverse rewrites only if a is equal to b. A rewriting system has the unique normal form property with respect to reduction (UN →) if for every term reducing to normal forms a and b, a is equal to ...

  8. Reduction strategy - Wikipedia

    en.wikipedia.org/wiki/Reduction_strategy

    In the context of the lambda calculus, normal-order reduction refers to leftmost-outermost reduction in the sense given above. [10] Normal-order reduction is normalizing, in the sense that if a term has a normal form, then normalā€order reduction will eventually reach it, hence the name normal. This is known as the standardization theorem. [11 ...

  9. Krivine machine - Wikipedia

    en.wikipedia.org/wiki/Krivine_machine

    A head normal form is a term of the lambda calculus which is not a head redex. [a] A head reduction is a (non empty) sequence of contractions of a term which contracts head redexes. A head reduction of a term t (which is supposed not to be in head normal form) is a head reduction which starts from a term t and ends on a head normal form. From ...