Search results
Results From The WOW.Com Content Network
Minkowski's addition of convex shapes by Alexander Bogomolny: an applet; Wikibooks:OpenSCAD User Manual/Transformations#minkowski by Marius Kintel: Application; Application of Minkowski Addition to robotics by Joan Gerard; Demonstration of Minkowski additivity, convex monotonicity, and other properties of the Earth Movers distance
In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.
Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Unsourced material may be challenged and removed. Find sources: "Computational complexity of mathematical operations" – news · newspapers · books · scholar · JSTOR ( April 2015 ) ( Learn how and when to remove this ...
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
"The linear complementarity problem, sufficient matrices, and the criss-cross method" (PDF). Linear Algebra and Its Applications. 187: 1– 14. doi: 10.1016/0024-3795(93)90124-7. Murty, Katta G. (January 1972). "On the number of solutions to the complementarity problem and spanning properties of complementary cones" (PDF).
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
The orthogonal Procrustes problem [1] is a matrix approximation problem in linear algebra. In its classical form, one is given two matrices A {\displaystyle A} and B {\displaystyle B} and asked to find an orthogonal matrix Ω {\displaystyle \Omega } which most closely maps A {\displaystyle A} to B {\displaystyle B} .
A wide range of datasets are naturally organized in matrix form. One example is the movie-ratings matrix, as appears in the Netflix problem: Given a ratings matrix in which each entry (,) represents the rating of movie by customer , if customer has watched movie and is otherwise missing, we would like to predict the remaining entries in order ...