When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ 0 —having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ 0.

  3. Fisher consistency - Wikipedia

    en.wikipedia.org/wiki/Fisher_consistency

    The sample mean is a Fisher consistent and unbiased estimate of the population mean, but not all Fisher consistent estimates are unbiased. Suppose we observe a sample from a uniform distribution on (0,θ) and we wish to estimate θ. The sample maximum is Fisher consistent, but downwardly biased.

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:

  5. Asymptotic theory (statistics) - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_theory_(statistics)

    In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞. In practice, a limit evaluation is ...

  6. Estimation statistics - Wikipedia

    en.wikipedia.org/wiki/Estimation_statistics

    This feature remains constant with increasing sample size; what changes is that the interval becomes smaller. In addition, 95% confidence intervals are also 83% prediction intervals: one (pre experimental) confidence interval has an 83% chance of covering any future experiment's mean. [3]

  7. Sequential estimation - Wikipedia

    en.wikipedia.org/wiki/Sequential_estimation

    In statistics, sequential estimation refers to estimation methods in sequential analysis where the sample size is not fixed in advance. Instead, data is evaluated as it is collected, and further sampling is stopped in accordance with a predefined stopping rule as soon as significant results are observed.

  8. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound.

  9. Maximum spacing estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_spacing_estimation

    Then the maximum spacing estimator of θ 0 is defined as a value that maximizes the logarithm of the geometric mean of sample spacings: ^ = (), = + + = + = + ⁡ (). By the inequality of arithmetic and geometric means , function S n ( θ ) is bounded from above by −ln( n +1), and thus the maximum has to exist at least in the supremum sense.