Search results
Results From The WOW.Com Content Network
Stability is a measure of the sensitivity to rounding errors of a given numerical procedure; by contrast, the condition number of a function for a given problem indicates the inherent sensitivity of the function to small perturbations in its input and is independent of the implementation used to solve the problem. [5] [6]
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Time series of the Tent map for the parameter m=2.0 which shows numerical error: "the plot of time series (plot of x variable with respect to number of iterations) stops fluctuating and no values are observed after n=50". Parameter m= 2.0, initial point is random.
The bias is a fixed, constant value; random variation is just that – random, unpredictable. Random variations are not predictable but they do tend to follow some rules, and those rules are usually summarized by a mathematical construct called a probability density function (PDF). This function, in turn, has a few parameters that are very ...
x erf x 1 − erf x; 0: 0: 1: 0.02: 0.022 564 575: 0.977 435 425: 0.04: 0.045 111 106: 0.954 888 894: 0.06: 0.067 621 594: 0.932 378 406: 0.08: 0.090 078 126: 0.909 ...
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
If you've recently received an error notice from the IRS due to a "math error" -- you're not alone. According to the Taxpayer Advocate, since July 15 there have been ...
Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.