When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    This equation is derived by keeping track of both the momentum of the object as well as the momentum of the ejected/accreted mass (dm). When considered together, the object and the mass ( d m ) constitute a closed system in which total momentum is conserved.

  3. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Momentum of particle multiplied by distance travelled J/Hz L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit ...

  4. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  5. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  6. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Momentum space is the set of all momentum vectors p a physical system can have; the momentum vector of a particle corresponds to its motion, with dimension of mass ⋅ length ⋅ time −1. Mathematically, the duality between position and momentum is an example of Pontryagin duality .

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.

  8. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.

  9. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = (p x, p y, p z) = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is = (,,,) = (,,,). The quantity mv of above is the ordinary ...