When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  4. Angle trisection - Wikipedia

    en.wikipedia.org/wiki/Angle_trisection

    Then by the triple-angle formula, cos ⁠ π / 3 ⁠ = 4x 3 − 3x and so 4x 3 − 3x = ⁠ 1 / 2 ⁠. Thus 8x 3 − 6x − 1 = 0. Define p(t) to be the polynomial p(t) = 8t 3 − 6t − 1. Since x = cos 20° is a root of p(t), the minimal polynomial for cos 20° is a factor of p(t). Because p(t) has degree 3, if it is reducible over by Q then ...

  5. Talk:Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Talk:Proofs_of...

    The proof of the angle sum identities by Euler's formula is not valid because it creates circular dependency. All 3 proofs of Euler's formula (power series, calculus, differential equations) rely on the derivatives of the trigonometric functions, which in turn rely on the angle sum identities to simplify sin(x+h) and cos(x+h).

  6. Morrie's law - Wikipedia

    en.wikipedia.org/wiki/Morrie's_law

    The inner angles of the nonagon equal and furthermore = =, = = and = = (see graphic). Applying the cosinus definition in the right angle triangles B F M {\displaystyle \triangle BFM} , B D L {\displaystyle \triangle BDL} and B C J {\displaystyle \triangle BCJ} then yields the proof for Morrie's law: [ 2 ]

  7. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Case 3: two sides and an opposite angle given (SSA). The sine rule gives C and then we have Case 7. There are either one or two solutions. Case 4: two angles and an included side given (ASA). The four-part cotangent formulae for sets (cBaC) and (BaCb) give c and b, then A follows from the sine rule. Case 5: two angles and an opposite side given ...

  8. Law of cotangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_cotangents

    Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = ⁠ a + b + c / 2 ⁠, and r is the radius of the inscribed circle, the law of cotangents states that

  9. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 7a – Proof of the law of cosines for acute angle γ by "cutting and pasting". Fig. 7b – Proof of the law of cosines for obtuse angle γ by "cutting and pasting". One can also prove the law of cosines by calculating areas. The change of sign as the angle γ becomes obtuse makes a case distinction necessary. Recall that