When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Improper integral - Wikipedia

    en.wikipedia.org/wiki/Improper_integral

    In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. [1] In the context of Riemann integrals (or, equivalently, Darboux integrals ), this typically involves unboundedness, either of the set over which the integral is taken or of ...

  3. List of integration and measure theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_integration_and...

    3 Improper integrals. 4 Measure theory and the Lebesgue integral. 5 Extensions. 6 Integral equations. ... Download as PDF; Printable version; In other projects ...

  4. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    Limits of integration can also be defined for improper integrals, with the limits of integration of both + and again being a and b. For an improper integral ∫ a ∞ f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)\,dx} or ∫ − ∞ b f ( x ) d x {\displaystyle \int _{-\infty }^{b}f(x)\,dx} the limits of integration are a and ∞, or − ...

  5. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  6. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    One may view the method of integration by substitution as a partial justification of Leibniz's notation for integrals and derivatives. The formula is used to transform one integral into another integral that is easier to compute. Thus, the formula can be read from left to right or from right to left in order to simplify a given integral.

  7. Jordan's lemma - Wikipedia

    en.wikipedia.org/wiki/Jordan's_lemma

    The path C is the concatenation of the paths C 1 and C 2.. Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f(z) = e i a z g(z) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z 1, z 2, …, z n.

  8. Cauchy principal value - Wikipedia

    en.wikipedia.org/wiki/Cauchy_principal_value

    The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of contour integrals of a complex-valued function f ( z ) : z = x + i y , {\displaystyle f(z):z=x+i\,y\;,} with x , y ...

  9. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals , and g is a non-negative monotonically decreasing function , then the integral of fg is a convergent improper integral.