Search results
Results From The WOW.Com Content Network
One of the simplest algorithms finds the largest number in a list of numbers of random order. Finding the solution requires looking at every number in the list. From this follows a simple algorithm, which can be described in plain English as: High-level description: If a set of numbers is empty, then there is no highest number.
For examples of this specification-method applied to the addition algorithm "m+n" see Algorithm examples. An example in Boolos-Burgess-Jeffrey (2002) (pp. 31–32) demonstrates the precision required in a complete specification of an algorithm, in this case to add two numbers: m+n. It is similar to the Stone requirements above.
For example, bubble sort and timsort are both algorithms to sort a list of items from smallest to largest. Bubble sort organizes the list in time proportional to the number of elements squared ( O ( n 2 ) {\textstyle O(n^{2})} , see Big O notation ), but only requires a small amount of extra memory which is constant with respect to the length ...
For example, a ρ-approximation algorithm A is defined to be an algorithm for which it has been proven that the value/cost, f(x), of the approximate solution A(x) to an instance x will not be more (or less, depending on the situation) than a factor ρ times the value, OPT, of an optimum solution.
The question then is, whether there exists an algorithm that maps instances to solutions. For example, in the factoring problem, the instances are the integers n, and solutions are prime numbers p that are the nontrivial prime factors of n. An example of a computational problem without a solution is the Halting problem. Computational problems ...
Clearly, a #P problem must be at least as hard as the corresponding NP problem, since a count of solutions immediately tells if at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that are believed to be difficult correspond to easy (for example linear-time) P problems. [18]
Since algorithms are platform-independent (i.e. a given algorithm can be implemented in an arbitrary programming language on an arbitrary computer running an arbitrary operating system), there are additional significant drawbacks to using an empirical approach to gauge the comparative performance of a given set of algorithms. Take as an example ...
The algorithm explores branches of this tree, which represent subsets of the solution set. Before enumerating the candidate solutions of a branch, the branch is checked against upper and lower estimated bounds on the optimal solution, and is discarded if it cannot produce a better solution than the best one found so far by the algorithm.