Search results
Results From The WOW.Com Content Network
Axon guidance (also called axon pathfinding) is a subfield of neural development concerning the process by which neurons send out axons to reach their correct targets. Axons often follow very precise paths in the nervous system, and how they manage to find their way so accurately is an area of ongoing research.
Axonal transport, also called axoplasmic transport or axoplasmic flow, is a cellular process responsible for movement of mitochondria, lipids, synaptic vesicles, proteins, and other organelles to and from a neuron's cell body, through the cytoplasm of its axon called the axoplasm. [1] Since some axons are on the order of meters long, neurons ...
Such a pathway can trigger the assembly of new molecules, such as a fat or protein. Pathways can also turn genes on and off, or spur a cell to move. [1] Some of the most common biological pathways are involved in metabolism, the regulation of gene expression and the transmission of signals. Pathways play a key role in advanced studies of genomics.
The Schaffer collateral is located between the CA3 region and CA1 region in the hippocampus. Schaffer collaterals are the axons of pyramidal cells that connect two neurons (CA3 and CA1) and transfer information from CA3 to CA1. [5] [6] The entorhinal cortex sends the main input to the dentate gyrus (perforant pathway).
Slit-Robo is the name of a cell signaling protein complex with many diverse functions including axon guidance and angiogenesis.. Slit refers to a secreted protein that is most widely known as a repulsive axon guidance cue, and Robo refers to its transmembrane protein receptor.
In some species, axons can emanate from dendrites known as axon-carrying dendrites. [1] No neuron ever has more than one axon; however in invertebrates such as insects or leeches the axon sometimes consists of several regions that function more or less independently of each other. [2] Axons are covered by a membrane known as an axolemma; the ...
The size and the spacing of the internodes vary with the fiber diameter in a curvilinear relationship that is optimized for maximal conduction velocity. [5] The size of the nodes span from 1–2 μm whereas the internodes can be up to (and occasionally even greater than)1.5 millimetres long, depending on the axon diameter and fiber type.
A single oligodendrocyte can extend its processes to cover up to 40 axons, that can include multiple adjacent axons. [2] The myelin sheath is not continuous but is segmented along the axon's length at gaps known as the nodes of Ranvier. In the peripheral nervous system the myelination of axons is carried out by Schwann cells. [1]