Search results
Results From The WOW.Com Content Network
The shikimate pathway (shikimic acid pathway) is a seven-step metabolic pathway used by bacteria, archaea, fungi, algae, some protozoans, and plants for the biosynthesis of folates and aromatic amino acids (tryptophan, phenylalanine, and tyrosine). This pathway is not found in mammals.
The shikimate pathway, named after shikimic acid as important intermediate, is a seven-step metabolic route used by bacteria, fungi, algae, parasites, and plants for the biosynthesis of aromatic amino acids (phenylalanine, tyrosine, and tryptophan).
DAHP synthase is the first enzyme that acts in the Shikimate Pathway in microorganisms, fungi, and plants. A series of catalytic mechanisms result in the production of aromatic amino acids required for metabolism. However, another biological function of the enzyme is to regulate the amount of carbon that enters the shikimate pathway.
Chorismate synthase catalyzes the last of the seven steps in the shikimate pathway which is used in prokaryotes, fungi and plants for the biosynthesis of aromatic amino acids. It catalyzes the 1,4-trans elimination of the phosphate group from 5-enolpyruvylshikimate-3-phosphate (EPSP) to form chorismate which can then be used in phenylalanine ...
The phenylpropanoids are a diverse family of organic compounds that are biosynthesized by plants from the amino acids phenylalanine and tyrosine in the shikimic acid pathway. [1] Their name is derived from the six-carbon, aromatic phenyl group and the three-carbon propene tail of coumaric acid , which is the central intermediate in ...
Biosynthesis of shikimic acid from 3-dehydroquinate Gallic acid is also formed from 3-dehydroshikimate by the action of the enzyme shikimate dehydrogenase to produce 3,5-didehydroshikimate . This latter compound spontaneously rearranges to gallic acid.
EPSP synthase is a monomeric enzyme with a molecular mass of approximately 46,000. [2] [3] [4] It consists of two domains connected by protein strands that function as a hinge, allowing the two domains to move closer together.
3-Dehydroquinic acid (DHQ) is the first carbocyclic intermediate of the shikimate pathway. [1] It is created from 3-deoxyarabinoheptulosonate 7-phosphate, a 7-carbon ulonic acid, by the enzyme DHQ synthase. The mechanism of ring closure is complex, but involves an aldol condensation at C-2 and C-7.