When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. lac operon - Wikipedia

    en.wikipedia.org/wiki/Lac_operon

    The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]

  3. Galactoside acetyltransferase - Wikipedia

    en.wikipedia.org/wiki/Galactoside_acetyltransferase

    The enzyme's role in the classical E.coli lac operon remains unclear. [1] [3] However, the enzyme's cellular role may be to detoxify non-metabolizable pyranosides by acetylating them and preventing their reentry into the cell. [1] [4]

  4. Beta-galactoside permease - Wikipedia

    en.wikipedia.org/wiki/Beta-galactoside_permease

    Galactoside permease is a protein coded by the lacY gene of the lac operon, and is found bound to the membrane of a cell for the purpose of binding galactoside molecules that have been solubilized. The protein is part of a system whose main function is to catalyze the accumulation and transport of lactose and other beta-galactosides across the ...

  5. Lactose permease - Wikipedia

    en.wikipedia.org/wiki/Lactose_permease

    The LacY gene is a component of the lac operon that encodes lactose permease, a protein responsible for breaking down lactose into glucose and galactose, alongside transacetylase and beta galactosidase. The absence of lactose permease leads to the inability of lactose to enter the cell for further metabolic processes.

  6. Lac repressor - Wikipedia

    en.wikipedia.org/wiki/Lac_repressor

    The lac repressor (LacI) operates by a helix-turn-helix motif in its DNA-binding domain, binding base-specifically to the major groove of the operator region of the lac operon, with base contacts also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. [1]

  7. β-Galactosidase - Wikipedia

    en.wikipedia.org/wiki/Β-Galactosidase

    In E. coli, the lacZ gene is the structural gene for β-galactosidase; which is present as part of the inducible system lac operon which is activated in the presence of lactose when glucose level is low. β-Galactosidase synthesis stops when glucose levels are sufficient. [2] β-Galactosidase has many homologues based on similar sequences.

  8. Silencer (genetics) - Wikipedia

    en.wikipedia.org/wiki/Silencer_(genetics)

    The lac operon in the prokaryote E. coli consists of genes that produce enzymes to break down lactose. Its operon is an example of a prokaryotic silencer. The three functional genes in this operon are lacZ, lacY, and lacA. [6] The repressor gene, lacI, will produce the repressor protein LacI which is under allosteric regulation.

  9. Catabolite repression - Wikipedia

    en.wikipedia.org/wiki/Catabolite_repression

    Catabolite repression was extensively studied in Escherichia coli. E. coli grows faster on glucose than on any other carbon source. For example, if E. coli is placed on an agar plate containing only glucose and lactose, the bacteria will use glucose first and lactose second.