When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    The torch package also simplifies object-oriented programming and serialization by providing various convenience functions which are used throughout its packages. The torch.class(classname, parentclass) function can be used to create object factories ().

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo, a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and inference performance across major cloud platforms.

  4. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    C++: Graphical user interface: Yes No Yes No Analytical differentiation No No No No Yes Yes OpenNN: Artelnics 2003 GNU LGPL: Yes Cross-platform: C++: C++: Yes No Yes No ? ? No No No ? Yes PlaidML: Vertex.AI, Intel: 2017 Apache 2.0: Yes Linux, macOS, Windows: Python, C++, OpenCL: Python, C++? Some OpenCL ICDs are not recognized No No Yes Yes Yes ...

  5. Differentiable programming - Wikipedia

    en.wikipedia.org/wiki/Differentiable_programming

    The C++ heyoka and python package heyoka.py make large use of this technique to offer advanced differentiable programming capabilities (also at high orders). A package for the Julia programming language – Zygote – works directly on Julia's intermediate representation. [7] [11] [5]

  6. List of programming languages for artificial intelligence

    en.wikipedia.org/wiki/List_of_programming...

    Python is a high-level, general-purpose programming language that is popular in artificial intelligence. [1] It has a simple, flexible and easily readable syntax. [2] Its popularity results in a vast ecosystem of libraries, including for deep learning, such as PyTorch, TensorFlow, Keras, Google JAX.

  7. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]

  8. Contextual image classification - Wikipedia

    en.wikipedia.org/.../Contextual_image_classification

    As the image illustrated below, if only a small portion of the image is shown, it is very difficult to tell what the image is about. Mouth. Even try another portion of the image, it is still difficult to classify the image. Left eye. However, if we increase the contextual of the image, then it makes more sense to recognize. Increased field of ...

  9. Connected-component labeling - Wikipedia

    en.wikipedia.org/wiki/Connected-component_labeling

    It is assumed that the input image is a binary image, with pixels being either background or foreground and that the connected components in the foreground pixels are desired. The algorithm steps can be written as: Start from the first pixel in the image. Set current label to 1. Go to (2).