When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    The torch.class(classname, parentclass) function can be used to create object factories . When the constructor is called, torch initializes and sets a Lua table with the user-defined metatable , which makes the table an object .

  3. Differentiable programming - Wikipedia

    en.wikipedia.org/wiki/Differentiable_programming

    [7] [11] [5] A limitation of earlier approaches is that they are only able to differentiate code written in a suitable manner for the framework, limiting their interoperability with other programs. Newer approaches resolve this issue by constructing the graph from the language's syntax or IR, allowing arbitrary code to be differentiated. [7] [9]

  4. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo, a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and inference performance across major cloud platforms.

  5. List of programming languages for artificial intelligence

    en.wikipedia.org/wiki/List_of_programming...

    The functions work on many types of data, including numerical, categorical, time series, textual, and image. [7] Mojo can run some Python programs, and supports programmability of AI hardware. It aims to combine the usability of Python with the performance of low-level programming languages like C++ or Rust. [8]

  6. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    It works on Linux, Windows, macOS, and is available in Python, [8] R, [9] and models built using CatBoost can be used for predictions in C++, Java, [10] C#, Rust, Core ML, ONNX, and PMML. The source code is licensed under Apache License and available on GitHub. [6] InfoWorld magazine awarded the library "The best machine learning tools" in 2017.

  7. ImageNet - Wikipedia

    en.wikipedia.org/wiki/ImageNet

    For example, in PyTorch, ImageNet images are by default normalized by dividing the pixel values so that they fall between 0 and 1, then subtracting by [0.485, 0.456, 0.406], then dividing by [0.229, 0.224, 0.225]. These are the mean and standard deviations, for ImageNet, so these whitens the input data. [23]

  8. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    C++: Graphical user interface: Yes No Yes No Analytical differentiation No No No No Yes Yes OpenNN: Artelnics 2003 GNU LGPL: Yes Cross-platform: C++: C++: Yes No Yes No ? ? No No No ? Yes PlaidML: Vertex.AI, Intel: 2017 Apache 2.0: Yes Linux, macOS, Windows: Python, C++, OpenCL: Python, C++? Some OpenCL ICDs are not recognized No No Yes Yes Yes ...

  9. Fréchet inception distance - Wikipedia

    en.wikipedia.org/wiki/Fréchet_inception_distance

    The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model. [2] [3] The FID compares the distribution of generated images with the distribution of a set of real images (a "ground truth" set).