Search results
Results From The WOW.Com Content Network
For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...
Engine efficiency of thermal engines is the relationship between the total energy contained in the fuel, and the amount of energy used to perform useful work. There are two classifications of thermal engines- Internal combustion (gasoline, diesel and gas turbine-Brayton cycle engines) and
Thermal efficiency or Fuel efficiency, useful heat and/or work output per input energy such as the fuel consumed; 'Total efficiency', e.g., for cogeneration, useful electric power and heat output per fuel energy consumed. Same as the thermal efficiency. Luminous efficiency, that portion of the emitted electromagnetic radiation is usable for ...
Increasing the input temperature (e.g. by using an oversized ground source or by access to a solar-assisted thermal bank [10]). Accurately determining thermal conductivity will allow for much more precise ground loop [11] or borehole sizing, [12] resulting in higher return temperatures and a more efficient system. For an air cooler, the COP ...
Since a Carnot heat engine is a reversible heat engine, and all reversible heat engines operate with the same efficiency between the same reservoirs, we have the first part of Carnot's theorem: No irreversible heat engine is more efficient than a Carnot heat engine operating between the same two thermal reservoirs.
: heat flux (W/m²); i.e., thermal power per unit area, = ˙ /: difference in temperature between the solid surface and surrounding fluid area (K) The heat transfer coefficient is the reciprocal of thermal insulance.
In thermal engineering, exergy efficiency (also known as the second-law efficiency or rational efficiency) computes the effectiveness of a system relative to its performance in reversible conditions. It is defined as the ratio of the thermal efficiency of an actual system compared to an idealized or reversible version of the system for heat ...
The efficiency of the ideal Brayton cycle is = = () /, where is the heat capacity ratio. [13] Figure 1 indicates how the cycle efficiency changes with an increase in pressure ratio. Figure 2 indicates how the specific power output changes with an increase in the gas turbine inlet temperature for two different pressure ratio values.